Robotics-Enhanced Laser Ice Collection

debris-resistant

curved track

stratigraphy

photodetector

laser emitter

core retraction

mechanism

motor drivers

Merlin L. Mah, Marie X. Wulff, Andrei V. Kurbatov, Joseph J. Talghader

NEED

- "Scientists will always need more ice cores."
- Large coring projects return only one core per depth; replicate drilling is prohibitively expensive
- Certain depths are of particular interest: abrupt climate event, original sample damaged/lost

ARCHITECTURE

- Laser source remains at ice surface, relieving downhole size/weight/power/heat considerations
- Optical fiber-equipped sampling sonde is lowered into existing dry or fluid-filled borehole
- Once at depth of interest, sonde emits laser beam to cut a closed path on borehole wall, freeing wedgeshaped sample
- Mechanism retracts sample into borehole center for retrieval to surface

LASER WAVELENGTHS

Two cost-effective laser wavelengths have been successfully tested to cut ice:

	1.07 µm	10.6 μm
Source	Yb-doped fiber lasers	CO ₂ gas lasers
Wall-plug efficiency	> 30%	~10%
Fiber material	silica	specialty / experimental
loss	< 1 dB/kilometer	> 1.5 dB/meter
Absorption length in ice	~1 mm	~10 mm
Existing applications	telecom (low power),	plastic & paper sheet cutting,
	metals machining, defense	soft-tissue surgery

Laser modulation/pulsing known to promote material ablation over melting, reduce peripheral heating

Thermal images of ice samples after 4 sec of 1.07 µm laser irradiation in Tests of cut width on a roughly rectangular continuous wave (CW) and pulsed operation. Both yield a ~1 mm stick of tap-water ice, ~25 mm in diameter diameter hole through the sample, but CW incurs a 6 °C temperature rise

in the surrounding ice vs. 2 °C for pulsed.

Fisheye photo of a basic laser-cutting | Wedge cut from 3" diameter tap-water motion setup at work inside lab freezer | core using 1.07 µm laser (90 W)

cut from 3" diameter tap-water core using 1.07 µm laser (250 W)

Climate Change Institute University of Maine Orono, ME, USA climatechange.umaine.edu/people/andrei-kurbatov/

power conversion

delivery fiber

management

track drive motor

sample

screws

retention

wedge-shaped

sample

(shortened

for display)

- Lightweight, inexpensive, fast-deployable system
- Quickly cut (~few minutes) and retrieve new samples from specific depths of interest in existing boreholes
- Cutting by laser eliminates contamination from mechanical blades, likely reduces microfractures
- Lack of vibration suggests better retrieval of brittle ice: highly-pressurized material with atmospheric gases compressed into clathrates. Ice from the brittle zone is extremely fragile, often lost to mechanical cutting

PIEZOELECTRIC ACOUSTIC SENSING

- How to quantify fracture rate of brittle ice in order to compare laser vs. mechanical cutting?
- Piezoelectric transducers: inexpensive, off-the-shelf, durable, expendable; freeze into artificial cores or onto surface of natural cores
- Readout and record using consumer-grade audio equipment, no additional amplification necessary
- When instrumented artificial ice is subjected to liquid nitrogen, sensors generate voltage spikes coinciding with visually-observed thermal crack events
- High-frequency content in acoustic spectra is consistent with fracturing
- Low complexity and cost suggests distributed sensors could continuously monitor freshly-drilled cores during acclimation

Recorded waveform and short-time Fourier transforms (1 ms window with 0.3 ms overlap) of a piezoelectric transducer frozen into an artificial ice core, before and (one example fracture event) after LN, exposure.

NEXT STEPS

- Optimization of cutting beam size, modulation frequencies using new 1 kW 1.07 μm laser
- Refinement of motion stages to maneuver beam for cutting wedges in lab tests

Parts of this work funded by NSF grants 2032463 and 2032473.

Joint Directed Energy Transition Office / Office of Naval Research,

aser source was jointly purchased by NSF and the

grant N00014-17-1-2438

- Perform cutting procedure immersed in sub-freezing fluid, test mitigation strategies for refreezing
- Further exploration of acoustic signatures of cracks caused by direct mechanical force; isolate longitudinal and shear stress frequency content for sensing of fracture location and orientation
- Where would you like more ice from?

Scan me for more!

Electrical & Computer Engineering University of Minnesota Minneapolis, MN, USA