Ryan Shea received a B.S. degree in Physics and B.A. degree in Mathematics from Augsburg College (Magna Cum Laude). He completed his Ph. D. in electrical engineering researching MEMS infrared detectors and thermoelectric elements.
Dr. Shea is now at Cypress Semiconductor in Minneapolis.
We have derived an expression for the effective absorbing area for thermal infrared detectors having non-zero absorption in the support legs, which is different from the geometric areas of the constituent detector elements. This technique is particularly applicable to devices where sensitivity is more important than fill-factor, as opposed to standard imaging arrays. The effective area can simply be substituted in standard equations to obtain a good estimate of the detector performance under uniform flood illumination conditions. The formalism can also be used for estimating the contributions of the individual signal generating elements to the total measured signal. This approximation has been tested for MEMS infrared detectors with thermoelectric readout operating under vacuum. The responsivity of the same device calculated using the effective area approximation and measured using a tightly constrained absorbing area are found to match very closely, within 5% over the most wavelengths and within 15% at the shortest thermal infrared wavelengths.
Incorporation of bismuth telluride/antimony telluride co-sputtered thermoelectric junctions into MEMS devices requires process developments for patterning and encapsulation as well as characterization of properties such as film stress and contact resistance. Test structures are presented for measuring important thermoelectric properties, resistivity, thermal conductivity, carrier concentration, and Seebeck coefficient. A fabrication process is presented that allows the junctions to be deposited, patterned, encapsulated, and etch released. Measurement of the thermoelectric junctions reveals a room temperature figure of merit, Z_T, of 0.43 with a total Seebeck coefficient difference of 150 μV/K, resistivities of 17.4 and 7.6 μΩ-m, and thermal conductivity of 0.34 and 0.30 W/mK for antimony telluride and bismuth telluride, respectively. The junctions have been incorporated into state of the art uncooled thermopile infrared detectors with a peak detectivity of 3 \texttimes 10^9 cm*Hz^(1/2)/W.
We describe uncooled thermal detectors with a peak detectivity of at least 3 \texttimes109 cm \textsurdHz/W with spectrally selective absorption in the long-wave infrared. The spectral selectivity in absorption is achieved through resonant cavity coupling of a thin metal film with a low-order air-gap optical cavity. The electrical readout uses thermoelectric thin films with a Johnson noise limited performance. The detectors are of multiple sizes but those with 100- μm2 area have time constants of 58 ms and thermal conductances of 2.3 \texttimes10-7 W/K.
We present the design, fabrication, and characterization of uncooled thermopile infrared detectors with cavity coupled absorption in the long wave infrared with perfor- mance exceeding all published works. These detectors consist of a two die optical cavity which enhances absorption in the desired spectral range while rejecting unwanted noise off resonance. The electrical transduction mechanism is a thermopile consisting of four thermoelectric junctions of co-sputtered Bi2Te3 and Sb2Te3 having a room temperature unitless thermoelectric figure of merit of .43. Processing steps are described in detail for the fabrication of extremely thermally isolated structures nessesary for highly sensitive detectors. Optical characterization of the devices reveals a responsivity of 4700 V/W, thermal time constant of 58 ms, and specific detectivity of at least 3.0x109 cm\textsurdHz/W. Also presented are a theoretical proposal for a midwave infrared detector using semicon- ductor selective absorption to enhance detectivity beyond the blackbody radiation limit and a new method for the analysis of radiation thermal conduction in highly thermally isolated structures.
On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sputtered Bi2Te3/Sb2Te3 thermoelectric junctions with cooling volumes of 200 μm \texttimes 200 μm \texttimes 65 nm, which we believe to be the smallest microcoolers ever made. The devices are highly thermally isolated with total thermal conductance under 5 \texttimes 10-7 W/K in vacuum at room temperature. By fitting the temperature response to input power of the devices in vacuum, we have quantified the nonlinearity of the response to calculate the radiative and film contributions to the total thermal conductance of the device. Three device geometries are presented, with radiative contributions to thermal conductance of 15%, 26%, and 100% depending on their emissive area and support structure. The cooling capabilities of these devices are also measured with maximum cooling of 3.1 K for the 15% radiation-limited device and 2.6 K for the 26% radiation-limited device, with power consumptions below 5 μW.
The far field radiation efficiency achievable in narrowband thermal emitters is investigated, taking into account the full spatial and spectral variation of the emissivity. A coupled Fabry-Perot cavity model is used to develop an insight into the efficiency variation with cavity coherence and device temperature. It is found that the spatial variation of emissivity has to be explicitly included in the radiation power calculations to accurately estimate the achievable power efficiencies. The calculated radiation efficiencies of an ideal coherent cavity coupled emitter were found to vary from 0.1% to 9%, with a corresponding increase in the emission linewidth from 6.3 nm to 930 nm, and were much lower than that estimated without accounting for effects of spatial coherence. The analysis presented here can be used to determine the optimal operating temperature of a coherent thermal emitter once its emission characteristics and conduction losses are known and it is demonstrated that this optimum temperature is different from the temperature of peak blackbody emission at the resonant absorption wavelength.
A review is made of the physics and technology of spectrally selective thermal detectors, especially those operating at non-cryogenic temperatures. The background radiation noise fluctuations are rederived for arbitrary spectral characteristics. Infrared absorption due to phonons and free carriers is discussed followed by a review of published works on artificial infrared absorption materials such as patterned grids, nanoparticles, plasmonic structures, metamaterials and others. Subsequently, the literature of the spectral characteristics of broadband thermal detectors and spectrally selective thermal detectors is reviewed. Finally, the authors speculate on the directions that future research and development in the area will take regarding architectures, sensitivity and spectral characteristics.
The blackbody radiation limit has traditionally been set forth as the ultimate performance limit of thermal detectors. However, this fundamental limit assumes that the detector absorbs uniformly throughout the thermal spectrum. In much the same way as photon detectors can achieve very high D* because they do not absorb photon energies below their bandgap, so too can thermal detectors except that thermal detectors are not limited to cryogenic operation. In both cases, the enhanced theoretical D* is achieved because the radiation noise is reduced in a device that does not absorb at a uniform high level throughout the thermal emission band. There are multiple ways to achieve high D* in thermal detectors. One is to use materials that absorb only in a certain spectral range, just as in photon detectors. For example a detector made from PbSe, with proper optical coupling, absorbs only photons with wavelengths shorter than 4.9μm. The radiation limited detectivity of such a device can theoretically exceed 9 x 1010cmHz1/2/W in the MWIR. Even with Johnson and 1/f noise estimates included, it can still exceed 2.5x1010cmHz1/2/W in the MWIR. Another technique, applicable for narrowband thermal detectors, is probably even more powerful. Consider a thermal detector that is almost completely transparent. Here, the radiation noise has been reduced but the signal has been reduced even more. However, if the device is now placed inside an optical cavity, then at one wavelength and in one direction, the nearly transparent detector couples to the cavity resonance to absorb at 100%. Radiation from all other wavelengths and directions are rejected by the cavity or are absorbed only weakly by the detector. It is shown that theoretically, the D* of these devices are roughly proportional to the inverse square root of the spectral resonant width under certain conditions. It is also shown that even including Johnson noise and 1/f noise, the practically achievable D* approaches or exceeds 1011 cmHz^1/2/W.